Quantitative proteomic identification of six4 as the trex-binding factor in the muscle creatine kinase enhancer.

نویسندگان

  • Charis L Himeda
  • Jeffrey A Ranish
  • John C Angello
  • Pascal Maire
  • Ruedi Aebersold
  • Stephen D Hauschka
چکیده

Transcriptional regulatory element X (Trex) is a positive control site within the Muscle creatine kinase (MCK) enhancer. Cell culture and transgenic studies indicate that the Trex site is important for MCK expression in skeletal and cardiac muscle. After selectively enriching for the Trex-binding factor (TrexBF) using magnetic beads coupled to oligonucleotides containing either wild-type or mutant Trex sites, quantitative proteomics was used to identify TrexBF as Six4, a homeodomain transcription factor of the Six/sine oculis family, from a background of approximately 900 copurifying proteins. Using gel shift assays and Six-specific antisera, we demonstrated that Six4 is TrexBF in mouse skeletal myocytes and embryonic day 10 chick skeletal and cardiac muscle, while Six5 is the major TrexBF in adult mouse heart. In cotransfection studies, Six4 transactivates the MCK enhancer as well as muscle-specific regulatory regions of Aldolase A and Cardiac troponin C via Trex/MEF3 sites. Our results are consistent with Six4 being a key regulator of muscle gene expression in adult skeletal muscle and in developing striated muscle. The Trex/MEF3 composite sequence ([C/A]ACC[C/T]GA) allowed us to identify novel putative Six-binding sites in six other muscle genes. Our proteomics strategy will be useful for identifying transcription factors from complex mixtures using only defined DNA fragments for purification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative proteomic identification of MAZ as a transcriptional regulator of muscle-specific genes in skeletal and cardiac myocytes.

We identified a conserved sequence within the Muscle creatine kinase (MCK) promoter that is critical for high-level activity in skeletal and cardiac myocytes (MCK Promoter Element X [MPEX]). After selectively enriching for MPEX-binding factor(s) (MPEX-BFs), ICAT-based quantitative proteomics was used to identify MPEX-BF candidates, one of which was MAZ (Myc-associated zinc finger protein). MAZ ...

متن کامل

Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products.

The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals bl...

متن کامل

Comparison of Effect of Piperine and Capsaicin with Tabata Exercise on Changes in Serum Nitric Oxide and Creatine Kinase of Kung Fu Boys

Introduction: Tabata exercise programs can produce free radicals and muscle soreness and herbal supplements may be helpful as mediators in response to oxidative damage and muscle stress. Therefore, the purpose of this study was to compare the effects of these two supplements with Tabata exercise activity on nitric oxide and creatine kinase enzyme. Methods: The research was a quasi-experimental...

متن کامل

Differential trans-activation of a muscle-specific enhancer by myogenic helix-loop-helix proteins is separable from DNA binding.

The muscle creatine kinase (MCK) enhancer was used as a target to study the specificity of DNA binding and trans-activation by members of the helix-loop-helix (HLH) family of myogenic regulatory factors, MyoD1, myogenin, myf-5, and MRF4. Whereas all four myogenic factors bound with similar affinities to the MCK enhancer in the presence of the widely expressed HLH protein E12, only MyoD1, myogen...

متن کامل

Levels of C-reactive protein, creatine kinase-muscle and aldolase A are suitable biomarkers to detect the risk factors for osteoarthritic disorders: A novel diagnostic protocol

Background: C-reactive protein (CRP), creatine kinase-muscle (CK-MM) and aldolase A (AldoA) levels are predicted to be realistic biomarkers of osteoarthritic disorders (OADs). The objective of the study was to evaluate the levels of CRP, CK-MM, and AldoA and determine their correlations with risk factors such as inflammation, muscle degeneration, and skeletal muscle damage for OADs. Methods: B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2004